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Values of the constants used in the present case, are ;
Po= =3/, Pr=1 sy Be== — 1008, D = 2.549, Ap= By (n=1,..., m).

The error of the approximation (2, 7) does not exceed 3% for all 0 << Res <7 o,
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1, Solution of certain classes of the boundary value problems of mathematical phy-
sics for a two-layer medium demands that the given function be expanded into an inte-
gral in terms o‘f the ~Euncucms <<y

W= wsin VB Az B _ (1.1
PN =) Gy B cos VB — 1) +8cos VEMsinYBah e — 1) (<< )

which are eigenfunctions of the following singular boundary value problem:
P+ BMp=0 0zl ¢+ fMe=0 (<o) (1.2)
PO) = 0, @(oc) < o, @l —0)= popl + 0), ¢’ —0) =g’ +0)
The fundamental result of the present investigation can be stated in the form of the

following theorem: if f(z) is a piece-wise continuous function absolutely integrable on
the interval (0, co) and possessing a bounded variation in this interval, then
(o]

2 @A C Ml =0 +f @+ O)] (@£1)
“S o (M) d’“§“E’)'(&)q’(g’Mda_{[51(1,-0)+pf(t+0)1/1+6 (z=1)

o

(1.3)
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©(A)=sin? VBM 4+ 8% cos® VEAL, 8=(u/v) VBi/B: (1.4)
Me)=08 VPhi/u® ©<z<<l), re)= VB (<2< ) (1.5)

When B, = B, == p = v==1, the expansion (1. 3) becomes an ordinary Fourier inte-
gral,

To prove the theorem, we shall consider the integral
T ©

2 ¢ s A
s@ =" o { 10:@ &R0 (1.6)
after noting, that ol
, A
lrore BEREED copen nre )

By virtue of the above inequality and of the absolute integrability of f(z), the inner
integral of (1,6) converges uniformly in A for all A & (0, ).
Therefore,

2 & S o Mo A
J (z, T):-?E-\ )r(ﬁ)dES —c'i(g—m)—(q)xgx—)—dx_
1]
! T
2 5 VR psin VBirEe (=, M,
=7 T §“)“’ES ) dh A+

st

9 o T
+~ V‘;Sf(a)das [sin VBi Acos VBe h(E— 1)+ 8cos VBiMsin VB A(E— )X

l 0

) = V&y@wuna Nt 4= Vi Sf(&)%(ﬂ?, g T)dg (L)

To start with, let = & (0, I). Then T

wl:S sin ¥V Biiz sin VB;)»E

o) (1.8)

it

~3

Y

- — — — . S dl
\i}z’—‘-\ sin V@i he Isin VBAl cos VBeA(E— 1)+ 8 cos VMl sin VB b E— 1] YR
¢ (1.9)
Expanding now the quantity 1 /e (A) into a series in powers of the parameter
e cos 2 V' BAl where e=(1—06)/(1+ &) (1.10)

changing the order of summation and integration in (1. 8) and representing the powers
of cos 2 VB, A I by multiple arcs, we can complete the quadratures in A and reduce
(1. 8) after some manipulations,to the form

“n
sin6_T sin0, 7T 7 1 --8° \ sin(@_—ua,) T
(1+62)w1=[ R ] 25 *Z on 2 [—e_:?;‘“‘

sin{0, —a,) 7T sin{8. -+ ay,) T sin (9 -}- a,) T ]

(111

6, —a, 0_+an 0, +a,
0+ = VBiz + ), an=21 VBin — k), vp=ent ['/a (n — 1)]
Similarly, setting n == VB — 1), 04 == V'B; (I + z), we obtain from (1, 9)

14686 sin(@_+n7T sin (8, 4+ T 1-8[sin(ﬁ_—n)T
M= { R ]+ 2 9_—n

where
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sin(ﬁ-+—~'q}TJ 146 2 2 [Sin(t}_+n»—-xn)’1‘ _
‘)n

B ’fh—*ﬁ 1__}_52 k—o ’9_+n—:{n
sin(9,+n—u,)T sm(x‘)_+n+an)T sin(®, + n 4 2y, T)]
- 4, +T|"dn O_+n+a, - G+, +

1—68 2 2: }:sin(ﬁk—n—an)T sin(®, —n—a,) T
)n .

RS L —— 8, —n—a, &

Sm(ﬁ,—ﬂ—i-%)'r Sin{®, —N-+ay) T

b —n+oy, o B, —n+an 5

Passing now to the limit as 7 — » in (1, 7),(1.11) and (1. 12) and applying the Rie-
mann and Dirichlet lemmas [1], we obtain after certain transformations

lim J(z, T)="s[f (z —0) + f (z +0)] + VB umgf(

g S =R { ERES Ry 9 2 g

=1

(1.12)

2m m—1

2m — k7 [ sin dm — 4k — 1)+ 2] — T

X{[l”m”‘(‘ — 8 e HS {yg[[:am_.akw'&))e:c]]—r?} -
sin{VRi[(hm — 4k — W)l —a]—m T |

T VBitim — 4k — 1)l —x] — L

sin{VE[(4m—4k+1)l+x]—n}Tﬁsin{]/BT[(/em—-/{k-{—i)lwx]ﬂn}T}dE

VBil(dm — 4k + 1)L+ 2] —n VBil(hm — k4 1)L — 2] -

Changing the order of summation over m and k in the last expression yields an inner
sum of the form

k
1'—“(‘3——{1—%5}'5;’;:‘1){ (113

2 o “[s e+ 1)~ (1.14)
m“k 2
which, by virtue of the equations
(.lﬂ ® YT g‘ cmek <i\.2m =k S (f_\m (1.15)
) - Gt gy TR 2 =g

m==k
is equal to zero, Thus, we have
m J, T)="%{flz—0+ flz+ O, T >
Q.E.D, Proof of the theorem for the cases » & (I, o0) and z = [, is analogous.

2, Examples of application of the above expansion to certain steady state problems
of mathematical physics and to the theory of elasticity for a two-layer medium, follow,
1°, We require to solve the Laplace's equation for the function u(r, z) inside 2 semi-
infinite cylinder of radius R with the conditions:
u(r, 0)=0, u(r,d — 0)= pu(r, I, + 0), v, (r, I — 0)= vu, (r, 14+ 0, v (R,2)= [ (2)

2.4
Separation of variables yields oo @
u(r, z) —_—5 AR) Io((?ug) P (2, ) dA (2.2)
and the inhomogeneous boundary condition leads to the expansinn
fe o]
@)=\ 40 e 1 dh (2.3)

V]

By (1, 3) we have (B, = f, = 1)
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2 1 8
AW =7 57y [ Or@9E NE (2.4)

(1}
2°, Solution of the Laplace's equation for the quadrant 0 << z, y < o, with the bound-
ary conditions g v — 0, u(l — 0, y) = pu@ + 0, ¥), uxll — 0, y) = vux(l + 0, p)
u(z,0) = f(z) {2.5)

has the form o0
u@ g =§ A0 e, 1) Mo (2.6)

[
where the quantity 4(x) is given by (2,4). In particular, if

fz)y=Ty 0z, fz)=0 (I<zc0) 27

then
2 Ty 1—cosAd
AN =750 m % (2.8)
and the solution of the problem assumes the form
o]
2Ty ¢ 1 —cos M Ay
u(z, y) = D S ol P A) e Mda, (2.9)
£ 0

3°, We consider the torsion of a semi-infinite cylinder (0 < r < R, 0 <z )
with one face fixed, consisting of two different materials separated by the section z = 1.
Solving the equation

Au—=r? y=0 (2.10)
for the only component uy(r, z) = u of elastic displacement we find
o
Iy (Ar) Gy
u —_—.-S A(MTI(L—R)- P (2, A)dh, Gz-é; {2.11)
1]

where G, denote the shear moduli,

In the simplest case when r== R and the displacement u == f(z) is given, the value
of A(A) can be found from (2, 4), The problems of torsion of a two-layer rod with the
stresses on its surface given, are solved in a similar manner,

The expansion (1, 3) discussed above represents a generalization of the Fourier sine
integral to the case of a compound interval, A similar theorem also exists for the Fourier
cosine integral when the condition of the second kind ¢’(0) = 0 is laid down in the cor-
responding boundary value problem for z == 0 . An expansion pertaining to a boundary
condition of the third kind {2] which can be proved using a method analogous to that
given in Sect, 1, represents a further generalization in the same direction,
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